

Are Integration Costs and Tariffs Based on Cost-Causation?

Michael Milligan, Ph.D.

Transmission and Grid Integration Group, NREL

About This Presentation

- Most information in this presentation is taken from the more comprehensive technical report Cost-Causation and Integration Cost Analysis for Variable Generation by Michael Milligan, Erik Ela, Bri-Mathis Hodge, Brendan Kirby, Debra Lew, Charlton Clark, Jennifer DeCesaro, and Kevin Lynn
- www.nrel.gov/docs/fy11osti/51860.pdf

Outline/Headlines

- Integration costs are difficult to calculate correctly
- Other types of generation can impose integration costs
- Technology- or performancebased integration cost?

Time Scale for Power System Operations

Additional Ramping/Range → More Flexibility

Integration Costs: Wind and Solar

- Wind and solar generation increase the variability and uncertainty in power system operations
- Solar and wind integration issues are similar
- Cycling efficiency and flexibility reserves are key components
- These are not unique to wind or solar

How Are Integration Costs Calculated?

- Compare two (or more) alternative simulations of the power system using production simulation/cost models
 - With wind/solar
 - Without wind/solar
- To provide an energy-equivalent basis, a hypothetical unit is often chosen for the "without wind/solar" case
- This proxy resource may introduce unintended consequences
- It is natural to ask about integration costs, but extremely difficult, if not impossible, to measure them accurately

Integration Costs of Wind and Solar

- Can they be measured?
- If so, how are they defined?
- What are the proper benchmark units?
- How are cost and value untangled?
- What about units in one region that economically respond to needs in another region?
- Are there integration costs for other units?
 - Do all automatic generation control units follow the signal?
 - Are there efficiency costs of adding conventional generators?

Related reports:

Milligan, M.; Kirby, B. (2009). *Calculating Wind Integration Costs: Separating Wind Energy Value from Integration Cost Impacts.* 28 pp.; NREL/TP-550-46275.

www.nrel.gov/docs/fy09osti/46275.pdf

Milligan, M.; Ela, E.; Lew, D.; Corbus, D.; Wan, Y. H. (2010). "Advancing Wind Integration Study Methodologies: Implications of Higher Levels of Wind." 50 pp.; NREL/CP-550-48944.

www.nrel.gov/docs/fy10osti/48944.pdf

Total System Costs or Integration Costs

- Total operating costs are relatively easy to calculate
- Integration costs are difficult to calculate correctly
- Both of these are sensitive to assumptions about the other parts of the power system
 - What is the mix of conventional generation?
 - What is the transmission build-out (if any)?
 - What are the institutional constraints?
 - O What is the electrical footprint?
 - Do markets allow access to physical capability that exists, or is this access constrained?
 - What will the power system look like in 20xx?

Integration Costs and Cost-Causation

- Principles of cost-causation (see report)
- Cost-causer: must cause the cost
 - \circ \rightarrow If cost-causer is removed, so is the cost
 - If costs change, then agent of change is responsible
 - May be difficult to untangle

Are there other sources of integration costs?

Sources of Integration Costs: Scheduling/Dispatch

Hourly block schedules

- Impact of hourly schedules on BPA wind exports
- California Intermittency Analysis Project/GE 2007
- NREL's Western Wind and Solar Integration Study, 2010

- Contingency reserves
- New low-cost base-load
- Conventional generators (thermal) that don't follow automatic generation control signal

Milligan, M.; Kirby, B.; King, J.; Beuning, S. (2011). "The Impact of Alternative Dispatch Intervals on Operating Reserve Requirements for Variable Generation. Presented at 10th International Workshop on Large-Scale Integration of Wind (and Solar) Power into Power Systems." Aarhus, Denmark. October.

Contingency Reserves

- Specific rules vary, but the contingency reserve is typically set by the largest unit in the pool
- Often the specific reserve allocation is based on load ratio share or another similar metric
- When the largest unit is replaced by a still-larger unit, contingency reserve obligations increase
- → if I am a generation owner/operator, I will find my contingency reserve obligation may increase independently of any action I have taken (or not taken)

Contingency reserve costs could be allocated based on generators' contribution to contingency reserve activation...but this is not done.

Conventional Units May Impose Regulation Costs

Two similar coalfired generators: both are selling regulation, but the upper generator is following dispatch instructions fairly well providing regulation while the lower generator is not and is imposing a regulation burden on the power system.

Wind Plants May Provide Regulation!

Wind plant providing 15 MW regulation to a system with 150-MW requirement.

Kirby, B.; Milligan, M.; Ela, E. (2011). "Providing Minute-to-Minute Regulation from Wind Plants." 9th International Workshop on Large-Scale Integration of Wind Power into Power Systems as well as on Transmission Networks for Offshore Wind Power Plants Proceedings; October 19-19, Quebec, Canada.

New, Low-Cost Base-Load May Cause Integration Costs

1. Coal is operated as a base-load unit

2. With new wind generation added, gas and coal cycling increase and capacity factors decline

3. Instead of adding wind, a new, cheap base-load technology is introduced. Coal cycling increases; gas is nearly pushed out. Both coal and gas have lower capacity factors.

Performance Metric vs. Generation Type

Summary

- Wind (and solar) integration costs are very difficult to calculate correctly
- Other technologies can impose integration costs
- → If integration costs are to be assessed, a performance-based metric would be more appropriate...or perhaps none at all